NITRODERM® TTS
(nitroglycerin)
25 or 50 transdermal patch

Prescribing Information

1 Name of the medicinal product
NITRODERM® TTS 25 or 50 mg transdermal patch

2 Qualitative and quantitative composition
1,2,3-Propanetriol trinitrate (= nitroglycerin), 25 mg or 50 mg mg in a transdermal therapeutic system (TTS). Nitroglycerin is an organic nitrate derivative.
For excipients, see section 6.1 List of excipients.

3 Pharmaceutical form
Flat multilayer system designed to deliver nitroglycerin continuously through a release membrane following application to the skin. The release membrane limits delivery through hyperpermeable skin. The active substance penetrates the skin and thus becomes directly bioavailable to the systemic circulation at relatively constant concentrations during the recommended application period. The following two systems are available:

<table>
<thead>
<tr>
<th>Table 1 Nitroderm pharmaceutical forms</th>
<th>Nitroderm TTS 5</th>
<th>Nitroderm TTS 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitroglycerin content</td>
<td>25 mg</td>
<td>50 mg</td>
</tr>
<tr>
<td>Drug-releasing area</td>
<td>10 cm²</td>
<td>20 cm²</td>
</tr>
<tr>
<td>Imprint (backing side)</td>
<td>CG</td>
<td>CG</td>
</tr>
<tr>
<td></td>
<td>DOD</td>
<td>DPD</td>
</tr>
<tr>
<td>Colour of the release</td>
<td>off-white to yellowish</td>
<td></td>
</tr>
</tbody>
</table>
The numeric components of the product designations TTS 5 and TTS 10 denote the nominal amount of nitroglycerin in mg delivered by the system per 24 hours.

The remainder of the nitroglycerin in each system serves as a reserve and is not delivered in normal use. After 12 hours, for example, each system has delivered 10% of its original content of nitroglycerin. Since nitroglycerin is released from Nitroderm TTS at a constant rate per cm2, the dose administered is related to the size of the drug-releasing area. The nominal rate of nitroglycerin release in vivo is approximately 20-25 microgram/cm2.h.

The following cross-sectional diagram shows the composition of Nitroderm TTS.

4 Clinical particulars

4.1 Therapeutic indications

Prophylaxis of angina pectoris

As monotherapy or in combination with other anti-anginal drugs such as beta-blockers and/or calcium antagonists.

4.2 Posology and method of administration

General rules

Nitroderm TTS is not intended for the immediate relief of acute attacks of angina pectoris; if these occur, rapid-acting nitrate preparations should be used.

The response to nitrate preparations varies from patient to patient; the lowest effective dose should be prescribed. The application site should be changed regularly to prevent local irritation.

Development of tolerance or attenuation of therapeutic effect commonly occurs with prolonged or frequent administration of long-acting nitrates, including Nitroderm TTS or other transdermal systems. A patch-off period of 8-12 hours, usually at night, every 24 hours is recommended to overcome tolerance. Clinical trials have shown that in most patients intermittent therapy is more effective than continuous administration. Continuous application
of Nitroderm TTS may be appropriate for patients in whom long-term clinical responsiveness can be reliably assessed.

Prophylaxis of angina pectoris

Treatment should be initiated with one Nitroderm TTS 5 daily. According to the clinical response the daily dose can then be titrated upwards to:

- one Nitroderm TTS 10 (normal maintenance dose)
- one Nitroderm TTS 10 plus one Nitroderm TTS 5
- two Nitroderm TTS 10

Use in the elderly

No specific information on use in the elderly is available; however, there is no evidence to suggest that the dosage needs to be adjusted in elderly patients.

Use in children

Not enough is known about the effects of Nitroderm TTS in children, which means that it cannot be recommended for use in this age group.

4.3 Contraindications

Known hypersensitivity to nitroglycerin, and related organic nitrates or any excipient of Nitroderm TTS. Acute circulatory failure associated with marked hypotension (shock). Conditions associated with elevated intracranial pressure. Myocardial insufficiency due to obstruction, as in aortic or mitral stenosis or constrictive pericarditis.

Concomitant use of Nitroderm TTS and phosphodiesterase type 5 (PDE5) inhibitors such as sildenafil (Viagra®) is contraindicated, because PDE5 inhibitors may amplify the vasodilatory effects of Nitroderm TTS resulting in severe hypotension. The time course and dose dependence of this interaction have not been studied. Appropriate supportive care has not been studied, but it seems reasonable to treat this as a nitrite overdose, with elevation of the extremities and with central volume expansion.

The onset of action of transdermal nitroglycerin is not sufficiently rapid for this product to be useful in aborting an acute attack.

Allergy to the adhesives used in nitroglycerin patches has also been reported, and it similarly constitutes a contraindication to the use of this product.

4.4 Special warnings and special precautions for use

Warnings

As with other nitrate preparations, when transferring the patient on long-term therapy to another form of medication, nitroglycerin should be gradually withdrawn and overlapping treatment started.
The Nitroderm TTS patch contains an aluminium layer. Therefore, Nitroderm TTS must be removed before applying magnetic or electrical fields to the body during procedures such as MRI (Magnetic Resonance Imaging), cardioversion or DC defibrillation, or diathermy treatment.

In cases of recent myocardial infarction or acute heart failure, treatment with Nitroderm TTS should be carried out cautiously under strict medical surveillance and/or haemodynamic monitoring. A cardioverter/defibrillator should not be discharged through a paddle electrode that overlies a Nitroderm TTS patch. The arching that may be seen in this situation is harmless in itself, but it may be associated with local current concentration that can cause damage to the paddles and burns to the patient.

Precautions

Severe hypotension, particularly with upright posture, may occur with even small doses of nitroglycerin. This drug should therefore be used with caution in patients who may be volume depleted or who, for whatever reason, are already hypotensive. Hypotension induced by nitroglycerin may be accompanied by paradoxical bradycardia and increased angina pectoris.

Hypoxaemia

Caution should be exercised in patients with arterial hypoxaemia due to severe anaemia, because in such patients the biotransformation of nitroglycerin is reduced. Similarly, caution is called for in patients with hypoxaemia and ventilation/perfusion imbalance due to lung disease or ischaemic heart failure. Patients with angina pectoris, myocardial infarction, or cerebral ischaemia frequently suffer from abnormalities of the small airways (especially alveolar hypoxia). Under these circumstances vasoconstriction occurs within the lung to shift perfusion from areas of alveolar hypoxia to better ventilated regions of the lung. As a potent vasodilator, nitroglycerin could reverse this protective vasoconstriction and thus result in increased perfusion of poorly ventilated areas, worsening of the ventilation/perfusion imbalance, and a further decrease in the arterial partial pressure of oxygen.

Hypertrophic cardiomyopathy

Nitrate therapy may aggravate the angina caused by hypertrophic cardiomyopathy.

Increased angina

The possibility of increased frequency of angina during patch-off periods should be considered. In such cases the use of concomitant anti-anginal therapy is desirable.

Tolerance to sublingual nitroglycerin

As tolerance to nitroglycerin patches develops, the effect of sublingual nitroglycerin on exercise tolerance may be partially diminished.

In industrial workers who have had long-term exposure to unknown (presumably high) doses of organic nitrates, tolerance clearly occurs. Chest pain, acute myocardial infarction, and even sudden death have occurred during temporary withdrawal of nitrates from these workers, demonstrating the existence of true physical dependence.
Treatment with nitroglycerin may be associated with lightheadedness on standing, especially just after rising from a recumbent or seated position. This effect may be more frequent in patients who have also consumed alcohol.

After normal use, there is enough residual nitroglycerin in discarded patches that they are a potential hazard to children and pets.

4.5 Interaction with other medicinal products and other forms of interaction

Concomitant treatment with other vasodilators (e.g. PDE5 inhibitors such as sildenafil [Viagra®]), calcium antagonists, ACE inhibitors, beta-blockers, diuretics, antihypertensives, tricyclic antidepressants, and major tranquillisers may potentiate the blood-pressure-lowering effect of Nitroderm TTS, as may alcohol. Concurrent administration of Nitroderm TTS with dihydroergotamine may increase the bioavailability of dihydroergotamine. This warrants special attention in patients with coronary artery disease, because dihydroergotamine antagonises the effect of nitroglycerin and may lead to coronary vasoconstriction.

The possibility that the ingestion of acetylsalicylic acid and non-steroidal anti-inflammatory drugs might diminish the therapeutic response to Nitroderm TTS cannot be excluded.

4.6 Pregnancy and lactation

Pregnancy

Like any drug, Nitroderm TTS should be employed with caution during pregnancy, especially in the first 3 months.

Lactation

It is not known whether the active substance passes into the breast milk. The benefits for the mother must be weighed against the risks for the child.

4.7 Effects on ability to drive and use machines

Nitroderm TTS, especially at the start of treatment, may impair the reactions, e.g. when driving or using machines.

4.8 Undesirable effects

Adverse reactions are ranked in descending order of frequency, as follows: Very common (≥ 1/10); common (≥ 1/100, < 1/10); uncommon (≥ 1/1000, < 1/100); rare (≥ 1/10,000, < 1/1000); very rare (< 1/10,000), including isolated reports

Table 1

<table>
<thead>
<tr>
<th>Nervous system disorders</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Common:</td>
<td>Headache</td>
</tr>
<tr>
<td>Very rare:</td>
<td>Dizziness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiac disorders</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rare:</td>
<td>Tachycardia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vascular disorders</th>
<th></th>
</tr>
</thead>
</table>
Like other nitrate preparations, Nitroderm TTS commonly causes dose-dependent headaches due to cerebral vasodilatation. These often regress after a few days despite the maintenance of therapy. If headaches persist during intermittent therapy, they should be treated with mild analgesics. Unresponsive headaches are an indication for reducing the dosage of nitroglycerin or discontinuing treatment.

Upon removal of the patch, any slight reddening of the skin will usually disappear within a few hours. The application site should be changed regularly to prevent local irritation. There have been a few reports of genuine anaphylactoid reactions, and these reactions can probably occur in patients receiving nitroglycerin by any route.

A slight reflex-induced increase in heart rate can be avoided by resorting, if necessary, to combined treatment with a beta-blocker.

Extremely rarely, ordinary doses of organic nitrates have caused methemoglobinemia in normal-seeming patients. Methemoglobinemia is so infrequent at these doses that further discussion of its diagnosis and treatment is deferred (see overdosage).

4.9 Overdose

Hemodynamic effects

The ill effects of nitroglycerin overdose are generally the results of nitroglycerin’s capacity to induce vasodilation, venous pooling, reduced cardiac output, and hypotension. These hemodynamic changes may have protean manifestations, including increased intracranial pressure, with any or all od persistent throbbing headache, confusion, and moderate fever; vertigo; palpitations; visual disturbances; nausea and vomiting (possibly with colic and even bloody diarrhea); syncope (especially in the upright posture); air hunger and dyspnea, later followed by reduced ventilatory effort; diaphoresis, with the skin either flushed or cold and clammy; heart block and bradycardia; paralysis; coma; seizures; and death.

Laboratory determinations of serum levels of nitroglycerin and its metabolites are not widely available, and such determinations have, in any event, no established role in the management of nitroglycerin overdose.

No data are available to suggest physiological maneuvers (e.g. maneuvers to change the pH of the urine) that might accelerate elimination of nitroglycerin and its active metabolites. Similarly, it is not known which – if any – of these substances can usefully be removed from the body by hemodyalysis.

No specific antagonist to the vasodilator effects of nitroglycerin is known, and no intervention
has been subject to controlled study as a therapy of nitroglycerin overdose. Because the hypotension associated with nitroglycerin overdose is the result of venodilatation and arterial hypovolemia, prudent therapy in this situation should be directed toward increase in central fluid volume. Passive elevation of the patient’s legs may be sufficient, but intravenous infusion of normal saline or similar fluid may also be necessary.

The use of epinephrine or other arterial vasoconstrictors in this setting is likely to do more harm than good.

In patients with renal disease or congestive heart failure, therapy resulting in central volume expansion is not without hazard. Treatment of nitroglycerin overdose in these patients may be subtle and difficult, and invasive monitoring may be required.

Methemoglobinemia:

Nitrate ions liberated during metabolism of nitroglycerin can oxidize hemoglobin into methemoglobin. Even in patients totally without cytochrome B5 reductase activity, however, and even assuming that the nitrate moieties of nitroglycerin are quantitatively applied to oxidation of hemoglobin, about 1mg/kg of nitroglycerin should be required before any of these patients manifests clinically significant (≥ 10%) methemoglobinemia. In patients with normal reductase function, significant production of methemoglobin should required even larger doses of nitroglycerin. In one study in which 36 patients received 2-4 weeks of continuous nitroglycerin therapy at 3.1 to 4.4 mg/hr, the average methemoglobin level measured was 0.2%; this was comparable to that observed in parallel patients who received placebo.

Notwithstanding these observations, there are case reports of significant methemoglobinemia in association with moderate overdoses of organic nitrates. None of the affected patients had been thought to be unusually susceptible.

Methemoglobin levels are available from most clinical laboratories. The diagnosis should be suspected in patients who exhibit signs of impaired oxygen delivery despite adequate cardiac output and adequate arterial PO2. Classically, methemoglobinemic blood is described as chocolate brown, without color change on exposure to air.

When methemoglobinemia is diagnosed, the treatment of choice is methylene blue, 1-2 mg/kg intravenously.

5 Pharmacological properties

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Vasodilators used in cardiac diseases, ATC code: C01DA02

Nitroglycerin relaxes smooth muscle throughout the body. In the vascular system it acts chiefly on the systemic veins and accessorially on the large coronary arteries.

In angina pectoris a fundamental mechanism of action of nitroglycerin is an increase in venous capacitance (venous pooling) leading to a decreased return of blood to the heart. This lowers left ventricular end-diastolic pressure (preload) and hence filling volume, which in turn lowers the myocardial oxygen requirement at rest and especially during exercise, hence enhancing exercise capacity.
In the coronary arterial circulation nitroglycerin dilates both extramural conductance and small resistance vessels. The drug appears to redistribute coronary blood flow to ischaemic subendocardium by selectively dilating large epicardial vessels. It can also dilate stenoses caused by eccentric atheroma. In addition, nitroglycerin relaxes vasospasm, whether spontaneous or induced by ergonovine.

Nitroglycerin dose-dependently dilates the arteriolar vascular bed, thereby lowering systemic vascular resistance (afterload) and left ventricular systolic wall tension, and further reducing myocardial oxygen consumption.

Dosing regimens for most chronically used drugs aim for plasma concentrations that continuously exceed the minimally effective concentration, but this strategy is probably inappropriate for organic nitrates. Although some well-controlled clinical trials using exercise tolerance testing showed that efficacy is maintained when patches are worn continuously, most of them reported the development of tolerance (i.e. attenuation of effect as measured by exercise testing) within the first day. As might be expected on pharmacological grounds, tolerance is also observed with high transdermal doses exceeding 4 mg/h.

Efficacy of organic nitrates is restored after a nitrate-free interval. The shortest drug-free interval sufficient to restore response has not been defined. Intervals of 8 to 12 hours are known to be sufficient, shorter intervals have not been fully studied. When administered according to an intermittent regimen, doses of Nitroderm TTS delivering 0.4-0.8 mg/h (20-40 cm²) have shown increased exercise capacity for 8 to 12 hours.

Controlled clinical trial data suggest that intermittent use of nitrates may be associated with a decrease in exercise tolerance compared with placebo during the last part of the nitrate-free interval; the clinical relevance of this observation is unknown (see section “Special warnings and special precautions for use”).

In chronic heart failure the venodilator action of nitroglycerin lowers the elevated left ventricular filling pressure, while maintaining or slightly increasing cardiac output. In this indication the beneficial effects of nitroglycerin are restricted to severe heart failure with predominant symptoms of pulmonary venous congestion due to a pronounced increase in left ventricular filling pressure. Where improve-stroke volume is desired, combined treatment with an arterial vasodilator such as hydralazine is recommended.

5.2 Pharmacokinetic properties

Nitroderm TTS

Following single application of Nitroderm TTS, the plasma concentrations of nitroglycerin reach a plateau within 2 hours, which is maintained over the recommended application period. The height of this plateau is directly proportional to the size of the system's drug-releasing area. The same plasma levels are attained regardless of whether the system is applied to the skin of the upper arm, pelvis, or chest. Levels fall rapidly after patch removal. Accumulation does not occur on repeated application of Nitroderm TTS.

Nitroglycerin

The active substance is rapidly metabolised by glutathione-dependent organic nitrate reductase in the liver. In addition, and probably more importantly, in vitro studies have shown
that the human erythrocyte is also a site of biotransformation via a sulphydryl-dependent enzymatic process and interaction with reduced haemoglobin. In human erythrocytes, the reduced haemoglobin level seems to play a major role in metabolic activity, and caution should therefore be exercised in patients with anaemia. In animal studies it has been found that extrahepatic vascular tissues (femoral vein, inferior vena cava, aorta) likewise play an important role in nitroglycerin metabolism, a finding which is consistent with the large systemic clearance seen with nitrates. It has also been shown in vitro that the biotransformation of nitroglycerin occurs concurrently with vascular smooth muscle relaxation; this observation is consistent with the hypothesis that nitroglycerin biotransformation is involved in the mechanism of nitroglycerin-induced vasodilatation.

5.3 Preclinical safety data

Mutagenicity

Studies performed with trinitroglycerin (TNG) have provided no evidence of mutagenic potential.

Carcinogenicity

Rats receiving very high doses of TNG (363 mg/kg/day in males and 434 mg/kg/day in females) for two years had hepatocellular carcinomas and testicular interstitial cell tumours. Mice receiving 1,022 (males) or 1,058 mg/kg/day (females) and rats receiving 31.5 (males) or 38.1 mg/kg/day (females) for the same period showed no treatment-related tumours.

Reproduction toxicity

TNG exhibited no teratogenic potential in rats.

6 Pharmaceutical particulars

6.1 List of excipients
Silica aerogel, silicone oil 360 medical adhesive.

6.2 Incompatibilities
Not applicable.

6.3 Shelf life
3 years.

6.4 Special precautions for storage
Do not store above 25°C.
Nitroderm TTS should be kept out of the reach and sight of children both before and after use.
6.5 **Nature and contents of container**

6.6 **Instructions for use and handling**
Each Nitroderm TTS patch is sealed in a separate sachet with a tear-off edge to facilitate removal. After removing the white protective backing, apply the Nitroderm TTS patch to a clean, non-hairy, dry area of intact skin on the trunk or upper arm. Hold the patch in position for 10-20 seconds with the palm of the hand. Switch application sites daily, wait several days before using the same area again.

Manufacturer:
Novartis Pharma AG Stein, Switzerland
for Novartis Pharma AG, Basel, Switzerland

License Holder:
PharmaExcel Ltd.
23 Hasivim St., Petach-Tikva